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foreword
Since the turn of the century, I have found myself creating, consuming, and process-
ing copious amounts of data. The idea of a terabyte of data was ludicrous, and this was
well before the term big data came into existence. When big data came onto the scene,
driven by Hadoop, not many solutions were available. Still, the community came
together quickly to figure out how to apply this technology stack to business problems.
The shift in technology stacks was enabled mainly by the Java programming language.
Enterprise software was being developed with Java to target various hardware plat-
forms and abstract the hardware. 

 At that time, I was embracing this technology stack and working in the digital map-
ping industry. I then began applying these technologies in the digital advertising tech-
nology industry, pushing boundaries only seen in that industry: upward of 60 billion
advertising requests per day. I then turned to apply my experience to the consumer
packaged goods retail analytics space. These technologies were very complex, and
many found them unwieldy. 

 It was circa 2010 when I met Paco. I was a co-founder of the Chicago Hadoop Users
Group (CHUG) and invited Paco to speak about an open source project, Apache
Mesos. He explained the value of the software and how it would help drive better hard-
ware utilization in the data center. Shortly thereafter, I came to know Dean, a physicist,
who was applying his depth of knowledge at a hedge fund company. In our intersecting
roles, we became collaborators and friends, and we all stayed tied to use cases in and
around the big data application space. I place Dean and Paco in a group of people I
associate with who, like me, are all lifelong learners—eager to push the boundaries and
not afraid to fail, as long as we can learn a better way to apply technology.
iii



FOREWORDiv
 Within just a few short years of big data taking over the technology sector, the term
data science came into being: using data to drive a business, most commonly associated
with in-depth data analytics, streaming data, and applying machine learning to impact
a business.

 Fast-forward to the COVID-19 pandemic. Paco delivered a keynote presentation at
the Big Things Conference that made me realize there was an opportunity in front of
us to drive a new era of education. I quickly brought up the topic with Paco to discuss
the paradigm change that was underway. I escalated the conversation by bringing
Dean into this story because he has experienced these same things and, quite frankly,
three brains are better than two. 

 For the last 20 years, we have been abstracting away the hardware to make it easy to
move our software between servers. However, the data science space has recently been
driven by the Python programming language, not Java. Open source software like
RAPIDS, and popular frameworks like PyTorch and TensorFlow, enable data scientists
and software engineers to take advantage of new hardware architectures that deliver
magnitudes of improved performance at a fraction of the cost. 

 We have grown accustomed to ignoring hardware and sticking with the status quo,
changing the software as we go, and altering our processes every step of the way to
scale out our solutions. In reality, this paradigm shift is offering us a new perspective.
Instead of ignoring the hardware, we can embrace the advancements provided by the
hardware architecture. This results in minimal or, potentially, no changes to the soft-
ware and no change to the processes to support these systems. This approach simpli-
fies the business’s operations and unlocks magnitudes of additional productivity and
value by flipping the traditional approach upside down.

 We are at an inflection point in enterprise operations and all data science–related
solutions. This report provides historical reference points and describes how we have
arrived where we are today thanks to approaches like the agile methodology and co-
development of hardware and software solution stacks.

 I hope that every reader will take away a series of learnings from this report. At the
top of that list is not to fear making changes at the hardware layer. The benefits are
abundant; the new approach will provide further opportunities and reduce the
amount of time to value for your business. Thirty years ago, people waited for code to
compile. Now people are waiting around for everything data-related. This is the
chance to take advantage of saving time: it is our most precious resource and most sig-
nificant opportunity to create an advantage in a competitive industry. 

 This report will serve as a blueprint for taking advantage of all the new technolo-
gies to drive your business ahead of the competition. I you derive significant value
from it. Paco, Dean, and I are here to help you through this journey.

 
 —Jim Scott, NVIDIA

https://www.youtube.com/watch?v=fA4NDIXrgFk


Hardware > Software >
Process: Data Science in

a Post-Moore’s Law World
Organizations have historically planned for their needs, driven processes to meet
those needs, implemented their business solutions in software, and let IT worry
about the hardware. It’s time to invert this perspective. Since around 2009, GPUs
have been essential for deep learning, driving innovative breakthroughs like Alex-
Net in 2013, which was built on the CUDA API for NVIDIA GPUs. Simultaneously,
the death of Moore’s Law has pushed parallel distributed processing in other areas
of data science and general services. Even general-purpose system-on-chip (SoC)
designs from Qualcomm and Apple now included dedicated neural engines for
deep learning (DL).

Software engineers have been taught 
the following:
 Process (such as Agile) is generic and equally 

applicable for all projects.

 Software emphasizes general-purpose approaches, 
largely agnostic about the hardware.

 Hardware is low-level and out of view, hidden 
behind abstractions, a resource that keeps 
getting faster, better, and cheaper, thanks to 
Moore’s Law.
1



2 Hardware > Software > Process: Data Science in a Post-Moore’s Law World
 This report explores the hardware innovations that enable applications that would
have been impossible without them. These innovations, in turn, demand rethinking
how we write data science applications and the processes we follow to build them. In
this report, you will learn:

 How hardware choices affect software performance
 What software idioms take full advantage of hardware acceleration, and which

idioms undermine this acceleration
 How to refine development processes and leverage emerging trends to maxi-

mize business outcomes
 Which are the emerging opportunities where changing processes can take bet-

ter advantage of these historic hardware innovations.

1 Backstory: Pythonistas, One and All
This report explores hardware innovations that enable previously impossible applica-
tions. They demand a rethinking of how we write data science applications and the
processes we follow to build them.

 In many ways, the Python language has become a lingua franca for work in data
analytics (or data science—whatever you want to call it). The language is quite simple
to learn and offers many popular libraries—pandas, scikit-learn, NumPy, PyTorch,
spaCy, NetworkX, and others—that have become de facto standards for data science
work.

 Early development of popular Python libraries like SciPy focused on medical imag-
ing use cases and related work in science. Since 2007, the Cython optimizing static
compiler has provided a native interface for C and C++ code, which brought in sophis-
ticated numerical libraries and allowed work in Python to get close to the hardware
for optimal performance. These factors converged in some of the most popular use
cases in data science—such as deep learning for computer vision—which relied on
both the numerical libraries in Python and the ability to access the hardware.

 One striking aspect of the Python language is how compact the source code tends
to be. That generally makes Python code simpler to read and reuse, which is especially
important for open source projects.

 The Python language is also relatively forgiving for people who aren’t expert at
software engineering. It was made simple by design. While the Python 3.x releases
have begun to incorporate more sophisticated programming language features such
as type annotations, futures, and so on, the use of these is not required. The barrier to
entry is low. 

 Given the accessibility of learning and using the language, many people have
adopted Python for a broad range of popular use cases. An important point to under-
stand is that the Python interpreter alone has always been relatively slow, especially for
use cases that require lots of number crunching. The use of Cython and native librar-
ies became important for data science needs early on since it allows for more effective
use of the underlying hardware. Consequently, a dichotomy emerged where, on the

https://docs.python.org/3/library/typing.html
https://docs.python.org/3/library/asyncio-future.html
https://pandas.pydata.org/
https://scikit-learn.org/stable/
https://numpy.org/
https://pytorch.org/
https://spacy.io/
https://networkx.org/
https://www.scipy.org/
https://cython.org/
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one hand, Python provides easy-to-use, concise APIs; but on the other hand, some
popular use cases need high performance. As we’ll see in this report, idiomatic use of
Python provides a bridge between the two and is crucial for making effective use of
the hardware. 

 However, the idioms of Python and almost all other programming languages,
including the languages used to create the native libraries, have assumed a hardware
architecture typical for CPUs, especially x86 and its successors. Hardware is growing
more heterogeneous, with GPUs firmly established for graphics processing first and
then becoming necessary for the performance demands of data science, new CPU
architectures like ARM, and even new kinds of silicon specifically for deep learning.

 To that end, NVIDIA developed RAPIDS, a suite of data science libraries for GPUs.
RAPIDS re-implements several open source libraries, popular in data science work, to
make it much simpler to leverage GPU hardware for accelerating end-to-end data
workflows. The objective is to provide these capabilities with minimal code changes
and almost no new tools to learn. The APIs used in RAPIDS are designed to have a
familiar look and feel for data scientists who typically work in Python. Under the
hood, RAPIDS relies on several open source projects, notably

 Numba—An open source JIT compiler that translates NumPy calls and other
Python code into fast machine code using LLVM

 Apache Arrow—A language-independent columnar memory format for effi-
cient data operations on contemporary hardware, including GPUs

Combined, these provide support for Multi-Node Multi-GPU (MNMG) deployments.
Key benefits include capabilities to allow processing and model training to scale up
for the use of much larger datasets while enabling end-to-end pipeline accelerations
with substantially lower serialization costs.

 Let’s step back for a moment to unpack this last statement. One essential challenge
in data analytics is that when a problem grows bigger than can be computed on a sin-
gle machine, what do you do? Since the mid-2000s, distributed frameworks such as
Hadoop, Spark, and so on have provided open source solutions that use CPU clusters
to handle these kinds of problems. Meanwhile, since about 2009, the use of GPUs has
been growing in specific areas of machine learning such as deep learning for com-
puter vision—where the use of CPUs would otherwise be slow. However, what do you
do when an important application runs too slowly on CPUs but won’t fit on a single
GPU? In other words, how can you leverage a cluster of CPUs and GPUs? The popular
data frameworks have never quite addressed this question. So RAPIDS provides a vital
missing piece through MNMG architec-
tures that uses both multiple GPUs and
multiple CPUs. In our current era of AI
enthusiasm, the co-evolution of hard-
ware and software has become crucial to
AI’s success.

In our current era of AI enthusiasm, the
co-evolution of hardware and software
has become crucial.

https://numpy.org/
https://llvm.org/
https://rapids.ai/
https://numba.pydata.org/
https://arrow.apache.org/
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 Even so, the perception persists in industry that using GPUs is (1) expensive and
(2) somewhat esoteric. While that was partially true in the past, recent advancements
in both hardware and software have largely erased these barriers. Even though you
may need to pay more per hour for a cloud instance that includes GPUs, in most
cases, the overall costs will be lower by leveraging their hardware acceleration—
there’s generally a tipping point in terms of dataset size beyond which it becomes
more expensive not to use GPUs. The economics of total cost of ownership (TCO)
resolve the perception that GPUs are expensive. Figure 1.1 compares the speedup and
costs of using a CPU versus a GPU for an example machine learning use case: hyper-
parameter optimization (HPO) for training a large random forest model. Effectively, this
case shows a 700% reduction in overall costs through hardware acceleration on GPUs,
so the solution becomes both faster and cheaper. We see similar ROIs across a range of
AI projects at scale. GPUs have become a ubiquitous HPC workhorse and value driver.

Figure 1.1 Example of reducing overall costs (700%) by using GPUs1

The perception that GPUs are esoteric
devices to use is resolved by using
RAPIDS and the evolving MNMG kinds
of architectures. Meanwhile, using idi-
omatic programming in Python is neces-
sary so that the underlying hardware can
optimize these kinds of data workloads. 

1 Source: https://docs.rapids.ai/overview/latest.pdf. Based on sample random forest training code from the
cloud-ml-examples repository, running on Azure ML: 10 concurrent workers with 100 total runs, 100 M rows,
and fivefold cross-validation per run. GPU nodes: 10× Standard_NC6s_v3, 1 V100 16G, vCPU 6 memory 112G,
Xeon E5-2690 v4 (Broadwell)—$3.366/hour. CPU nodes: 10× Standard_DS5_v2, vCPU 16 memory 56G, Xeon
E5-2673 v3 (Haswell) or v4 (Broadwell)—$1.017/hour.

Using idiomatic programming in Python
is necessary so that the underlying
hardware can optimize these kinds of
data workloads.

https://scikit-learn.org/stable/modules/grid_search.html
https://scikit-learn.org/stable/modules/grid_search.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://docs.rapids.ai/overview/latest.pdf
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2 Early ML in Production: The Two Cultures
Let’s roll back the clock to the release of Python 2.0 on 16 October 2000. Coinciden-
tally, just a few months afterward, several leading software engineers met in Snowbird,
Utah, to discuss lightweight software development methods, after which they pub-
lished the Manifesto for Agile Software Development. What followed was a vast rethinking
of software engineering practices. 

 Until that time, a naive waterfall model 2 dominated software engineering: projects
started with carefully defined requirements, then an architecture and design were
developed for the implementation, and then the code was written for the implemen-
tation. There was no concept of iterative feedback to improve the upstream artifacts.
In contrast, the Agile Manifesto emphasized delivering results in small increments with
frequent iterations, continuous learning, obtaining frequent feedback from stake-
holders, and using minimally sufficient process steps—some pretty significant changes
that impacted software itself.3 For example, the prior emphasis on grand architecture
and design shifted to more organic growth. Building software for all eventualities was
flipped to “don’t write the code until you actually need it.”

 These essential principles apply to a wide range of software work, but if you read
the Manifesto, you’ll notice that the word data is not used even once. That reflected the
mindset in software engineering at the time. Subsequent generations of mainstream
software developers have been taught that

Coding is pre-eminent; data is secondary.

But what about processes for data analysis projects? Later in the same year that the
Agile Manifesto was published, UC Berkeley professor Leo Breiman wrote a controver-
sial paper called “Statistical Modeling: The Two Cultures.” This paper chronicled a sea
change from an emphasis on building statistical models of data to a process of train-
ing an algorithm to simulate the data transformation process in question. The latter
approach has come to dominate data science even though the paper came out long
before that term became popular. 

 We’ll need to back up a few decades to understand why Breiman’s observations in
2001 created such a stir. Throughout the 1960s, 1970s, and 1980s, John Tukey and col-
leagues had promoted the idea of exploratory data analysis, where computing could be
used to study a dataset—which represented a radical shift in thinking. For example,
software could fit distributions or generate plots or other graphics much better than
a person with pencil and paper. Even so, that kind of approach reinforced a data
model view of the world: data was assumed to be generated by mechanisms that could
be described by statistical theory. Statisticians spent their time proving that point,

2 Waterfall became an industry standard after it was adopted as a required standard for software development
by the US Department of Defense. Tragically, the standard ignored a crucial detail in the seminal paper by
Winston Royce: the essential need for feedback loops. Hence, we used the term naive.

3 Manufacturing industries made this transition long ago. In fact, many ideas in Agile are inspired by manufac-
turing, such as Toyota’s Lean Manufacturing.

https://projecteuclid.org/journals/statistical-science/volume-16/issue-3/Statistical-Modeling--The-Two-Cultures-with-comments-and-a/10.1214/ss/1009213726.full
https://projecteuclid.org/journals/statistical-science/volume-18/issue-3/John-W-Tukey-and-Data-Analysis/10.1214/ss/1076102418.full
https://www.toyota-europe.com/world-of-toyota/this-is-toyota/toyota-production-system
http://agilemanifesto.org/
https://en.wikipedia.org/wiki/Waterfall_model
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
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focused on the theory. Meanwhile, a completely different community of practitioners
had emerged: they focused on algorithmic modeling instead, which relied more on
empirical work than theoretical modeling. In other words, given a mountain of data at
Amazon about customers who prefer to buy particular products, they use algorithms
to predict “People who bought Xyzzy also bought Wubble” and then make that recom-
mendation. Skip the part about proving any statistical theory regarding Xyzzy or Wub-
ble since the predictions are required within milliseconds. These new practitioners
leveraged machine learning algorithms, which worked fast and ignored much of the
theory required for statistical learning.

 Large-scale commercial successes with machine learning at Amazon, Google,
Yahoo!, eBay, LinkedIn, etc., sealed the deal. Within the next several years, big data,
data science, data engineering, machine learning, data privacy, and other aspects of
data began to loom large. In contrast to the perspectives that followed from the Agile
Manifesto, a quite different worldview emerged related to data practices:

Learning is pre-eminent; data is a competitive differentiator.

However, making coding pre-eminent is at odds with making learning pre-eminent.
While there are areas of overlap, such as the emphasis on incremental delivery and
continuous feedback, the code-centric agile processes have become canon among
software developers, while the data-centric4 model is how the tech “unicorn” compa-
nies have diverged so dramatically with first-mover advantage in AI. 

 Two decades later, we’re mostly stuck between agile processes and learning-driven
processes while the landscape has become more complex. Coding wants agility as well
as deterministic, repeatable processes, such as automated, repeatable CI/CD (continuous
integration/continuous delivery) pipelines. In contrast, data-centric approaches
embrace uncertainty within the data and even take advantage of it through probabilis-
tic methods such as machine learning. They also place a premium on what we could
call legibility, by which we mean clarity that our interpretation and application of our
data accurately reflects its inherent information and value. In other words, when your
code runs and passes its automated tests, producing expected results, it’s good to go.
However, when you’re working with data, you’ll most likely transform that data in
many ways through multiple stages of processing; nuances about meaning and inter-
pretation tend to get obscured at each stage, bias may be introduced along the way,
and even at the end of the workflow you still may not know what a “correct” result
should be. Saying “Well, the program ran okay, didn’t it?” is not enough for a data-
centric approach. Instead, you must make sure the data stays legible (capable of being
discovered or understood) at every stage of processing. The code and data views of
the world especially don’t agree on the latter part, and much of what we’ll explore
throughout this report is about improving how you work with data.

4 Andrew Ng has a good presentation about the priority of “data-centric” approaches in MLOps, showing a con-
trast between efforts to improve code (much of the history of IT) versus the upside from efforts to improve
data (better leverage).

https://www.youtube.com/watch?v=06-AZXmwHjo
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 Fortunately, the tech stack has evolved considerably over this period. While the
authors of the Agile Manifesto were primarily concerned with source code and team
process, and Breiman was mostly concerned with use cases of machine learning, nei-
ther had any clue that cloud computing would emerge within a few years. Nor did they
foresee how rapidly the layers underneath all that coding and modeling would evolve.
The emergence of Apache Spark, Dask, Ray, PyTorch, etc., has had an enormous
impact on what can be performed with a few lines of Python code. Moreover, the
hardware capabilities have completely changed: 2001 was a time when single-core
CPUs ran on spinny disks (that were prone to failure) with small amounts of memory
and relatively slow network connections, and gigabytes were considered large
amounts of data. Parallel processing required highly specialized software tools and
skills. Now, especially when it comes to machine learning work, a small fragment of
code can make entire GPU clusters do backflips, moving through terabytes with ease.

 Even so, “with great power comes great responsibility,” and parallel processing
doesn’t come for free. A notion of design patterns5 was introduced into software engi-
neering in the 1990s and became an important source of reusable programming
abstractions above the level of particular APIs. Similar kinds of design patterns
emerged for working with data at scale and building data science workflows; however,
each ecosystem’s patterns are poorly understood by the other.

 Fortunately, data scientists working in Python have developed their own effective
design patterns for data that are often expressed as idiomatic programming practices. By
using the proper design patterns, the underlying automation for data workflows can
work optimally, such as leveraging the available hardware and distributed computing.

 At the same time, software engineers have developed mature DevOps processes for
creating automated, repeatable deployments of services with essential monitoring and
management of deployed artifacts. An emerging consensus in the data world is the
need to adopt and adapt these processes, called MLOps or ModelOps.

3 Evolution of Hardware and Software: 
When Moore Becomes Less
Another interesting thing happened during the same two decades: Java became a
dominant programming language for enterprise applications. Along with that, wide-
spread use of the JVM (Java virtual machine) kept Java source code an arm’s length
away from the hardware. The appeal was twofold: Java applications were portable
across different hardware architectures and even operating systems, and the JVM
“walled garden” provided an extra measure of security. Translated: we didn’t need to
worry about hardware since it lives way down at a lower level, and it will just keep get-
ting better/faster/cheaper. 

5 The book Design Patterns: Elements of Reusable Object-Oriented Software was published in 1994 by the “Gang of
Four” (Gamma, Helm, Johnson, Vlissides; Addison-Wesley Professional, 1994).

https://en.wikipedia.org/wiki/Design_Patterns
http://spark.apache.org/
https://dask.org/
https://ray.io/
https://pytorch.org/
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 For a long time, Moore’s Law—which says that the number of transistors in chips
doubles every two years—has served as an approximate proxy for this performance
growth, as shown in figure 3.1. But notice the transition that started around 2005,
where single hardware thread (core) performance and clock speed began to level off,
while the number of cores began growing to compensate. To continue improving per-
formance, software applications written since that time have exploited concurrency
and distribution over multiple cores and even multiple CPUs.

However, the ever-increasing demand for optimal performance is outstripping Moore’s
Law. The computing requirements to train deep learning models continue growing at
least 10 times as fast as Moore’s Law. The breakthroughs in AI since the early 2010s
have pushed the envelope for computing. Deep learning use cases in computer vision,
speech, natural language, and other applications placed a premium on efficient
access to hardware accelerators. Data rates required to train a machine learning
model grew by orders of magnitude, as did the size of models in terms of their param-
eters. Hardware resources required to train large models grew at an even faster pace. 

 GPUs have become the essential hardware accelerators for meeting these require-
ments. The transistor counts are similar to those shown for CPUs, but the architectures

Figure 3.1 Moore’s Law for microprocessors (CPUs): transistor count versus time. Source: 
https://github.com/karlrupp/microprocessor-trend-data.

https://en.wikipedia.org/wiki/Moore's_law
https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://github.com/karlrupp/microprocessor-trend-data
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are very different, with orders of magnitude more cores that are designed to run in
groups called warps rather than each core running independently. For floating-point
calculations, like those required for deep learning (as well as the original target applica-
tion, computer graphics), GPUs can provide significantly more FLOPS (floating-point
operations per second) than more general-purpose CPUs.

 However, our software has to know how to exploit this advantage. Because of
Python’s ease of use, its active user community made machine learning more accessi-
ble, while at the same time, its ability to wrap calls to hardware-optimized libraries
enabled performance to be maximized. Hence, Python became the dominant lan-
guage for building these kinds of AI applications. This happened despite the JVM’s
dominance for other enterprise applications because it has been harder to integrate
native-optimized libraries with the JVM’s walled garden. The TIOBE Programming
Community Index shows that the popularity of Python has grown markedly in the last
three years or so. Python is now ranked as the third most popular language in the
index, after C and Java. Ironically, the popular systems that grew dominant during this
period have tended to be C/C++ under the hood: most of the PyData stack is Cython-
based, which, among other benefits, makes it easy to integrate high-performance
C/C++ libraries with Python code. Similarly, spaCy, TensorFlow, Ray, and RAPIDS also
leverage C/C++ kernels.

 Beyond being simply a function of model size, the requirements for nearly every
stage of a typical data science workflow have increased dramatically:

 Data preparation and curation—Data preparation and curation rates have grown
due to the need for larger training sets.

 Feature engineering—Feature engineering costs have grown as well, amplified by
increased attention to fairness, bias, and privacy concerns that tend to be intro-
duced at this stage, in addition to traditional data governance requirements (to
track and control access to data).

 Training and optimization—Not only have model training and evaluation increased,
but innovations in AutoML methods have amplified the computing needs at this
stage, such as hyperparameter optimization.

 Deployment—Deployment constraints, such as model distillation for low-power use
cases, use of federated learning and differential privacy for efficiency and pri-
vacy preservation, and other last-mile considerations also add to the compute
budget for ML.

Meanwhile, hardware acceleration offers
dramatic performance increases, which
also reduce overall costs. Going forward,
because of the growing requirements
of production workflows, effective
machine learning work in both research

Hardware acceleration offers dramatic
performance increases, which also reduce
overall costs.

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://cython.org
https://scikit-learn.org/stable/modules/grid_search.html


10 Hardware > Software > Process: Data Science in a Post-Moore’s Law World
and industry will rely on making more effective use of hardware. That, in turn, will
require code to be written in ways that hardware can optimize.

4 Building Data Workflows: Thinking Sparse and Dense
To effectively use machine learning, it’s important to understand the kinds of data
that is typically used with machine learning models and how data characteristics affect
performance. There may be structured data, as in what gets managed in a database.
There may also be images and video, and possibly audio—which are much less struc-
tured. There’s probably some machine data: somewhere in the late 1990s, the world
reached a point where most of the data online had been created by machines, such as
log files. Also, there’s lots and lots of text, because humans tend to communicate with
each other (and sometimes with machines) through text. 

 In contrast, at the level of hardware acceleration, we typically work with numeric
data that’s organized in vectors, matrices, and tensors. As we build data workflows to
produce and evaluate machine learning models, the different kinds of input data
require different kinds of processing. Much of this work is about transforming data
down to the numeric matrices the machines want and back again to representations
that people can comprehend. Figure 4.1 illustrates how it all begins, with typical
sources of data and their basic characteristics.

In a data-centric process, the aim is to write your software to leverage the hardware most
effectively. When working with data, there are a couple of important ways to think
about this problem at scale: one way is sparse, the other is dense, and you need to know

Figure 4.1 Different ingestion 
options, feeding data into the left-
hand side of a data pipeline
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when to use each to construct effective workflows. Early stages of a workflow tend to
be more sparse and use more symbolic representations—which are closer to the busi-
ness use case, closer to what the stakeholders recognize, and largely divorced from
representations that hardware uses internally. This kind of processing tends to hap-
pen in CPU-land and is usually less compute-intensive, although your mileage may
vary. The downstream stages, such as training and evaluating ML models, tend to be
more dense and also require numeric representations—which are closer to the hard-
ware, reflecting more how the data is processed at scale as vectors, matrices, and ten-
sors, with a less obvious connection to the business use case. This kind of processing
typically can be optimized by the use of GPUs, although not always. 

 In other words, we take raw data from real-world sources, which may be a collec-
tion of text documents, but by the time we start to train a machine learning model,
this data must be transformed into densely packed matrices of numbers. Once a ML
model gets deployed in production, its payload of customer input and inferred results
must be transformed back to the real world of symbols that customers can under-
stand: instead of returning a list of product ID numbers, your ecommerce website
probably spells out recommendations as a narrative, such as “People who bought
book X, also bought book Y and book Z.”

 While programming languages are quite good at converting between symbols and
numbers, they’re not especially good at distinguishing the sparse and dense needs
within a workflow. Meanwhile, the hardware is mostly focused on the denser parts. So
to leverage the hardware, as part of the team process, we must apply the sparse and
dense approaches in a workflow at the appropriate places.

 Let’s step back for a moment to consider an idealized data workflow. The typical
steps are as follows:

1 Data preparation
2 Feature engineering
3 Training models
4 Evaluating results
5 Testing and validation
6 Integrating/deploying models into use cases
7 Monitoring, measuring, making inquiries

In addition, workflows must leverage feedback at each stage—for example, to improve
the quantity and quality of labels, clarify which features or embeddings to use, resolve
issues of introducing bias, and so on. Figure 4.2 illustrates this process.

 Recognize that machine learning takes advantage of the structure it finds within
training data—in other words, the patterns. Making these patterns more evident in
the data is what the early stages of a workflow are all about. Overall, the general pro-
cess in data science involves the transition from relatively unstructured data sources
into more refined data representations, which are more structured.
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Typically, within a workflow, we focus on data preparation during the early stages, work-
ing with one or more datasets. You’d rarely ever use raw data to build a machine learn-
ing model. Instead, we transform data to build features6 for our training sets, for a few
good reasons:

 Different business logic often operates on different data sources.
 Improving the predictive power of the resulting model (accuracy, recall, etc.).
 Avoiding biased inferences (fairness/bias).
 Increasing the stability7 of training different models over time as data for use

case changes (MLOps issues).
 Optimizing to reduce the costs of training and inference.

Often the data preparation requires transformations: join, filter, aggregate, etc., which
may commonly be handled through SQL queries on a database. There may also be a
need for dimensionality reduction, shifting the problem space from sparse data in a
large number of dimensions (i.e., the real world) to dense data in fewer dimensions.
For example, an insurance workflow may need to make decisions about 100 million

6 Chris Albon provides an excellent tutorial about feature engineering and related work at https://chrisal-
bon.com/#machine_learning.

7 For a good introduction to an important part of ML that’s not widely implemented yet, see the frequently cited
paper “On the Stability of Feature Selection Algorithms” by Sarah Nogueira, Konstantinos Sechidis, and Gavin
Brown, Journal of Machine Learning Research vol. 18, pp. 1–54, 2018, www.cs.man.ac.uk/~gbrown/stability.

Figure 4.2 Typical stages in an idealized data workflow

https://en.wikipedia.org/wiki/Dimensionality_reduction
http://www.cs.man.ac.uk/~gbrown/stability
https://chrisalbon.com/#machine_learning
https://chrisalbon.com/#machine_learning
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documents, from 20 million customers, involving 300 different domain-specific terms
and conditions; however, within the workflow, the problem gets reduced to 12 different
customer segments with a clustering algorithm. The workflow’s dimensionality has been
reduced dramatically, often using what’s called an embedding—in other words, a rela-
tively low-dimensional space into which you can translate high-dimensional vectors.8

That makes it simpler to train ML models with large inputs, such as sparse vectors repre-
senting sets of words. This is one example of data preparation or preprocessing work to
refine the data so that it’s more readily usable by algorithms and hardware.

Exploiting the property of sparseness in data is what people tend to think about for big
data approaches—finding the proverbial needle in a haystack. A range of common
approaches use a general category of non-negative matrix factorization :9 clustering algo-
rithms, principal component analysis, singular value decomposition, autoencoders,
and so on. To understand why this principle of sparsity is important, consider that
probably no Netflix customer has rated every film on Netflix—but Netflix still needs
to be able to recommend new films based on what it knows about what everyone else
liked. If real-world data were more evenly distributed and symmetric, then building
a really good recommender system could be a simple matter of statistics. Instead,
content-recommender systems in ecommerce, social networks, genomic analysis, anti-
fraud anomaly detectors, and many other big data applications are informed by the
asymmetry of their underlying data and relations. We hear terms such as power law,
broad-tailed, and Zipfian to describe the highly skewed distributions that are often
encountered in the wild and are responsible for much of the sparseness found in
real-world data.

 Figure 4.3 illustrates what we mean. The sparse matrix for the actual data on the
left has many zeroes. The two computed matrices on the right are dense, with few if
any zero cells. When they’re multiplied together, the resulting 4 × 4 matrix is approxi-
mately equal to the original matrix on the left.

 In fact, Texas A&M hosts a “museum” of known data patterns in sparse matrices,
called the SparseSuite Matrix Collection (https://sparse.tamu.edu/interfaces).
These patterns have been used over the years to help determine how to optimize
GPU hardware.

8 For example, tSNE and UMAP are common methods for visualizing this kind of translation. For a good over-
view, see https://umap-learn.readthedocs.io/en/latest/how_umap_works.html.

Definition: Embedding
A common practice in data science where data points in a sparse high-dimensional
space are translated into a denser low-dimensional space through a process called
dimensionality reduction. The effects tend to create better predictive power for machine
learning models, for example, by clarifying the features used to train models.

9 See https://en.wikipedia.org/wiki/Non-negative_matrix_factorization.

https://umap-learn.readthedocs.io/en/latest/how_umap_works.html
https://en.wikipedia.org/wiki/Non-negative_matrix_factorization
https://sparse.tamu.edu/interfaces
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Figure 4.3 Sparse versus dense representation of matrix data10

The key takeaway here is to recognize the kind of processing needed in the early parts of a
workflow and perform it there—don’t conflate it with other work later in a pipeline. Refine your
data so that it’s ready for number crunching by hardware, but also have well-under-
stood ways to transform it back into something you’ll be able to interpret downstream.
This latter point becomes especially important for human-in-the-loop, explainable AI,
rules based on domain expertise, compliance audits, and so on.

 As development and deployment processes have matured, a boundary has
emerged between the processing steps leading to the creation of dense, usable data
for model training and scoring versus the downstream processes. A new category of
framework called a feature store11 is emerging as a boundary where the dense data
begins to be represented. Data engineering teams often take responsibility for devel-
oping the repeatable MLOps processes that process the sparse data into features, end-
ing at the feature store. The data science teams define the set of features and continue
developing models with this data, but production model training and serving also
become part of the MLOps pipeline developed and managed by data engineers. 

 After progressing through the sparse processing stages—once the dimensions have
been reduced and the features have been prepared—the challenges of distributed
processing shift focus to the density of the data, generally working with numeric repre-
sentations. Approaches used for graph algorithms, deep learning, visualization, etc.,
generally all require numeric representation. This is where “thinking dense” becomes
important.

 A good example is the PageRank algorithm used to rank web pages based on
which other pages link to them. Figure 4.4 is a sketch of the entire process. Web
crawlers download copies of web pages and preprocess them to extract their links in
the form of an adjacency matrix, along with the most significant words for each page.

10 In a real dataset, the number of total cells on the right-hand side would be dramatically smaller than the num-
ber on the left-hand side.

11 A feature store is a centralized storage where the features used within an organization to train ML models are
curated. This popular approach was introduced by the Uber Michelangelo project in 2017. For a good over-
view, see “Feature Store: The Missing Data Layer in ML Pipelines?” by Kim Hammar and Jim Dowling, and
also “Meet Michelangelo: Uber’s Machine Learning Platform” by Jeremy Hermann and Mike Del Balso.

https://www.logicalclocks.com/blog/feature-store-the-missing-data-layer-in-ml-pipelines
https://eng.uber.com/michelangelo-machine-learning-platform/
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Significant words are typically sparse (occurring on just a few pages), while uninterest-
ing words like the, a, he, she, etc. (also known as stop words) are dense, appearing on
most pages. The PageRank algorithm uses the structure of the adjacency matrix to
compute a score for each page based on how well-connected it is. Finally, the output
of the PageRank algorithm and the most relevant words for each page are combined
to generate an inverted index that maps each word to all the pages that contain it,
sorted by their respective PageRank values. 

 The general pattern employed here can be summarized as follows:

1 Join lots of data (sparse, symbolic).
2 Prepare features (reduce dimensions, transform to numeric).
3 Number-crunch on a dense, numeric chunk of data—which can run fast with

hardware acceleration.
4 Apply an inverse-transform to map the calculated results back to the sparse/

symbolic space for use cases.

Examples of these patterns for data workflows include processing text input for
scikit-learn pipelines and using LabelEncoder, where each string is encoded into a

Figure 4.4 Example of input data and output data in a PageRank workflow

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
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unique number, after which the processing runs on the dense, numeric representa-
tion. Embedding approaches12 used with PyTorch for deep learning input are similar.
Figure 4.5 shows a common form of encoding for deep learning, where a single fea-
ture with a fixed number of labels is transformed into columns of 1s or 0s; this is
called one-hot encoding.

Figure 4.5 Example of one-hot encoding,13 used for input data into neural networks in PyTorch

The next several sections about process depend on keeping a clear distinction between
sparse and dense in your data workflows.

5 The Disconnect Between Software Abstractions 
and Implementation
A core part of the hardware > software > process problem boils down to this: while our
programming languages have data types for representing strings, floats, lists, etc., they
don’t provide good ways to distinguish between “Run this part as sparse, symbolic data
on distributed software” and “Now let’s shift to dense, numeric arrays that must run
on GPUs.” Moreover, we’ve evolved software engineering practices that de-emphasize
the data and discourage working directly with the hardware. Applying this practice
across the board, circa 2021, can be an expensive mistake.

 A disconnect exists between the abstractions that we tend to use in data workflows
and how these are implemented in data frameworks. When people use the software
abstractions improperly, either the workflow runs slowly or it doesn’t run at all. In
other words, the hardware—and the many layers of software in between the hardware
and your software abstractions, such as the C++ in TensorFlow, spaCy, Ray, RAPIDS,
Legion, etc.—doesn’t have any opportunity to optimize the required work.

12 For a good overview, see “Screening and Stabilizing Learned Image Manifolds” from Deep Learning Analytics.
13 For example code, see “One-Hot Encode Nominal Categorical Features” in Machine Learning Flashcards by

Chris Albon.

https://www.youtube.com/watch?v=Nw774-4VMvY
https://chrisalbon.com/machine_learning/preprocessing_structured_data/one-hot_encode_nominal_categorical_features/
https://www.tensorflow.org/
https://spacy.io/
https://ray.io/
https://rapids.ai/
https://github.com/StanfordLegion/legion
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 For example, is the representation of our data conducive to optimal performance
as the hardware processes it at each stage of the workflow? Are we making assump-
tions about our algorithms that undermine hardware acceleration? People think
much differently about how to process their data than distributed processors do. Con-
sider figure 5.1, which illustrates schematically how data is moved from memory to the
cache in a CPU.

For example, due to fast CPU clock speeds, the time it takes to fetch data from mem-
ory takes tens of clock cycles, during which the processor core may sit idle. This means
data should be structured in memory such that each record can fit on a single CPU
cache line (typically 64 bytes); and larger chunks of data should be contiguous in mem-
ory so the cache can be kept hot with data just before it is needed, keeping the CPU
cores busy. The best chunk size probably won’t be apparent at the level of code in
Python—or in C++, Java, etc. Moreover, we shouldn’t assume that a compiler will
make good decisions about this. Instead, we need to rely on other tools outside of the
programming languages to determine how to optimize data workflows.

 A related problem affected the performance of Spark on the JVM. The Java mem-
ory model is ideal for heterogeneous graphs of data, shown schematically as Before in
figure 5.2. However, each traversal of an arrow requires a memory read to bring the
item into the cache. When you have billions of structurally identical records, all that
data movement per cache is wasted. It is far more efficient to use a compressed, con-
tiguous representation, shown schematically as After, where one memory fetch
brings the whole Person record or a sequence of records into the CPU cache. Spark

Figure 5.1 How a CPU looks at data
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implemented its own memory manager so it can use a compressed representation like
this, bypassing Java’s memory model and greatly improving performance.

 In several key ways now—most certainly within the space of AI applications—the hard-
ware has been evolving more rapidly than the software, and the software has been evolving
more rapidly than the processes we use to build it. How do we flip that around? How do
we teach software engineers to leverage design idioms and processes that make the
most of the hardware, because of the importance of how we need to use the data? And
in turn, how do we teach the software to make the most of the hardware underneath it?

 Fortunately, this is exactly where the idiomatic parts of Python come back into the
picture, smack dead center in the middle of the camera lens’s view. Idiomatic Python
is not pedantic; instead, it plays an important role for two big reasons:

 Software quality—Enabling the tools to prevent or at least catch subtle errors
 Performance—Allowing the underlying Cython, C++, OS, Arrow, Dask, Ray, sklearn

pipelines, etc., to do their magic to optimize pipelines for particular hardware.14

Definition: Dataframe
One of the most commonly used objects in data science workflows for data organized
as rows and columns. In other words, this is a two-dimensional, labeled data struc-
ture14 where the columns may represent different types of data—similar to a spread-
sheet or a SQL table.

14 See https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#dataframe.

Figure 5.2 Before and After memory model in Spark

https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#dataframe
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Let’s consider a question that shows up frequently on StackOverflow, where someone
working in Python wants to use a pandas dataframe for a data science project. They’ve
been taught to iterate through data using loops, so a natural conclusion is to build a
dataframe within a loop—except that, as it turns out, Python runs as slow as molasses
when you do that. Spoiler alert: the trick is to use a list comprehension, building a list of
dictionaries first—as a dense representation of the rows you want in the dataframe.
Then use the constructed list as input so that pandas can build the dataframe effi-
ciently instead of appending one row at a time. It’s a subtle nuance and a matter of idio-
matic programming in Python, as shown in figure 5.3.

Figure 5.3 Example code for comprehension (fast) versus comparing loop (slow) approaches for building 
a dataframe in Python15

Once you reach 10,000 or more rows, this idiomatic approach runs two orders of mag-
nitude faster—just in software. The idiomatic approach also allows you to run the
cuDF library in place of pandas and then run much faster on GPUs.

15 Running this example on a CPU shows a 17× difference in execution times for a list comprehension versus
using a loop. For extended analysis and discussions, see https://stackoverflow.com/questions/10715965/
create-pandas-dataframe-by-appending-one-row-at-a-time.

https://stackoverflow.com/questions/10715965/create-pandas-dataframe-by-appending-one-row-at-a-time
https://stackoverflow.com/questions/10715965/create-pandas-dataframe-by-appending-one-row-at-a-time
https://stackoverflow.com/questions/10715965/create-pandas-dataframe-by-appending-one-row-at-a-time
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 Overall, this is an example of where features for distributed processing and the
hardware to support them have evolved more rapidly than programming languages.
Programmers write loops all the time. It’s what you were taught to do, but that habit often
undermines performance in a world of data at scale, where parallelism and distribu-
tion are the only competitive path forward.

 A good point to keep in mind is that in data science, we generally are not writing
programs anymore; we’re integrating stages in pipelines.16 This is great news for pro-
ductivity and reliability. Writing low-level, bit-twiddling code is error-prone and time-
consuming. Being able to integrate mature, powerful pipeline segments to solve our
problems is an important advance. Hence, to resolve the disconnects between soft-
ware abstractions and their implementations, we must write the code well enough that
the underlying software frameworks and hardware accelerators can recognize design
patterns for distributed processing and take advantage of them. Fortunately, there are
tools and best practices to help with precisely that.

 An example of this change is the evolution of the Spark APIs. In the initial RDD
(resilient distributed dataset) API, the user chains together transformations inspired by
Scala’s collection API. However, when the Catalyst optimizer was introduced, users were
encouraged to migrate to the newer Spark SQL and related APIs, where fewer assump-
tions are made about how results are computed, allowing Catalyst the freedom to use
more aggressive optimizations. When you have an optimizer available, use it.

6 Key Abstractions
Let’s briefly discuss a few data abstractions that aren’t represented natively in pro-
gramming languages but are essential for using hardware efficiently. If our program-
ming languages supported these constructs natively, they could handle the required
best practices for us to optimize performance. Instead, we have to apply a little disci-
pline to use the right libraries in idiomatic ways, allowing those libraries to handle the
optimal behaviors for us. 

 There are open source implementations in Python for each of these popular
abstractions. RAPIDS provides a suite of open source libraries that build upon these
popular abstractions to optimize for leveraging GPUs—for the dense portions of the
workflows, as shown in the following table:

16 Chris Ré at Stanford has a really good talk about this point, “How Machine Learning Is Changing Software”:
https://youtu.be/45lqfnDM9Kw.

Abstraction Python libraries RAPIDS implementation

dataframe pandas cuDF

graph NetworkX, iGraph cuGraph

tensor PyTorch, TensorFlow NVTabular

ML pipeline scikit-learn cuML

https://youtu.be/45lqfnDM9Kw
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://www.scala-lang.org/api/current/scala/collection/index.html
https://databricks.com/glossary/catalyst-optimizer
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://rapids.ai/
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Following these abstractions helps reduce the cognitive load for an individual and helps
a team collaborate on best practices.

6.1 Dataframes (When Everything Is a Table …)

Perhaps the most common way to think of data is as a table, with rows and columns.
Visually, tables look like rectangles, matrices, grids, cuboids, and so on. Spreadsheets,
which we use daily, are the most common example. So are reporting tools and rela-
tional database tables with SQL. This form is ubiquitous, and it’s surprising that pro-
gramming languages don’t support it directly.

 However, it’s not surprising that pandas, which launched in 2008, became wildly
popular. The term data science was just starting to gain attention in industry. The data-
frame objects that form the basis for pandas became a core concept for Python data
science workflows. Otherwise, we were all writing custom code, over and over, to
accomplish that—which pandas abstracted into a standard practice.

 As a foundation for matrix operations, pandas is built atop NumPy—which was
built with vector operations and hardware optimization in mind. In turn, lessons
learned from using pandas led to a subsequent project: Apache Arrow,17 mentioned
earlier. Arrow uses an optimized C++ engine for efficient, in-memory columnar storage
and manipulation of data objects independent of the programming languages and
frameworks involved. The ongoing integration of Arrow and pandas enables much
more efficient memory use than a pure Python implementation would allow. Arrow
also provides APIs for many other languages to allow for cross-language tech stacks on
the same shared memory. Arrow provides a reusable, memory-efficient storage system,
akin to aspects of the shared memory described in the original Spark paper. 

 Figure 6.1 shows how Apache Arrow reduces the amount of system resources that
are wasted simply through copying objects in memory back and forth across different
frameworks. This helps resolve bandwidth bottlenecks. The practice of Unified Mem-
ory extends this approach, reducing the need to copy objects between CPU memory
and GPU memory.

 
 
 
 
 
 
 
 
 
 

17 This 2017 blog post by Wes McKinney explains many of the details, with additional project history:
https://www.dremio.com/origin-history-of-apache-arrow.

https://arrow.apache.org
https://pandas.pydata.org/about/
https://www.dremio.com/origin-history-of-apache-arrow
https://numpy.org
https://arrow.apache.org
https://www.usenix.org/legacy/event/hotcloud10/tech/full_papers/Zaharia.pdf
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Figure 6.1 Apache Arrow reduces copying memory back and forth.18

As a complement to Arrow’s in-memory representation, Apache Parquet provides a
standard serialization format for columnar persistent storage along with support for
features such as predicate pushdown,19 which are widely used for optimizing queries in
big data frameworks. In other words, only the columns required for a given query
need to be decompressed and deserialized—which leads to significant performance
gains. Parquet is leveraged by cuDF for fast data ingestion. The Parquet serialization
format provides highly efficient columnar storage on disk, which maps closely to the
needs of hardware optimizations and distributed software.

18 Copied from the Apache Arrow overview page: https://arrow.apache.org/overview.
19 For an overview, see “Understand predicate pushdown on row group level in Parquet with pyarrow and

python” by Peter Hoffmann.

https://arrow.apache.org/overview
http://peter-hoffmann.com/2020/understand-predicate-pushdown-on-rowgroup-level-in-parquet-with-pyarrow-and-python.html
http://peter-hoffmann.com/2020/understand-predicate-pushdown-on-rowgroup-level-in-parquet-with-pyarrow-and-python.html
http://peter-hoffmann.com/2020/understand-predicate-pushdown-on-rowgroup-level-in-parquet-with-pyarrow-and-python.html
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 Another popular tool called Dask scales workflows20 beyond single machines to
run on clusters, even for work with extremely large datasets. This integrates closely
with pandas, NumPy, scikit-learn, etc. Modin provides another abstraction that lever-
ages Dask or Ray to scale pandas workflows to run on clusters. These kinds of workflow
tools are highly recommended. They provide design patterns for the case where the
processing would not fit on a single processor and must be distributed. In doing so,
they make effective use of hardware while hiding the complexity from the user.

 To make the most of your hardware for dataframes, use the cuDF library, which is
foundational for RAPIDS and provides a GPU-optimized version of pandas. This fits
well into the typical uses for pandas dataframes such as scikit-learn, Dask, etc. For the
code repository, user documentation, and blog articles, see the following:

 https://github.com/rapidsai/cudf
 https://docs.rapids.ai/api/cudf/stable/
 https://medium.com/rapids-ai/tagged/dataframes

Dataframes in cuDF are built atop Apache Arrow’s columnar memory. This is the core
abstraction used throughout RAPIDS. By definition, this is the dense matrix of data in
its numeric representation.

 A key point to keep in mind is that while it’s possible in Python to iterate through a
pandas dataframe, it’s horribly inefficient. In cuDF, the intent is to steer developers
away from these kinds of antipatterns. So when you try to get away with a bad practice,
cuDF will either prevent it at the API level or use the existing exceptions in pandas to
communicate advice back to developers at runtime. Figure 6.2 shows an example of
idiomatic cuDF, which is concise and allows cuDF to optimize performance internally.

20 Dask-on-Ray is being used in petabyte-scale workloads at Amazon, etc.: https://docs.ray.io/en/master/dask-
on-ray.html.

Figure 6.2 Example code loading 
scikit-learn with a dataframe

https://modin.readthedocs.io/en/latest/
https://ray.io/
https://dask.org
https://docs.ray.io/en/master/dask-on-ray.html
https://docs.ray.io/en/master/dask-on-ray.html
https://github.com/rapidsai/cudf
https://docs.rapids.ai/api/cudf/stable/
https://medium.com/rapids-ai/tagged/dataframes
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If you find that some coding logic really seems to need a loop, instead use a user-
defined function (UDF), which can be applied to cuDF dataframes. This approach
borrows from functional programming and extends the range where hardware optimiza-
tions can apply. Moreover, cuDF uses Numba for JIT compilation of UDFs. 

 Figure 6.3 shows typical performance gains when you allow RAPIDS to do the opti-
mizations for pandas-based applications. Even on CPUs, looping through data your-
self limits processing to a single CPU core, one datum at a time.

Figure 6.3 Speedup benchmarks using cuDF and GPUs21

Another key point is that Dask understands at a workflow level how to optimize across
different workflow stages; this wouldn’t be possible at the cuDF level of the stack.
Dask-cuDF extends Dask where necessary so that its dataframe processing uses cuDF
to leverage GPUs. Meanwhile, the RAPIDS Memory Manager handles much lower-
level optimizations such as memory allocations—although you probably won’t need to
reach down into this level of detail. The bottom line is, if your workflow can run on a
single GPU, use cuDF; however, when you need to distribute processing of tabular
data across multiple GPUs—or perhaps input data from several files in parallel (as in
sharding)—then use Dask-cuDF.

21 cuDF v0.13, pandas 0.25.3. Running on NVIDIA DGX-1. GPU: NVIDIA Tesla V100 32GB. CPU: Intel® Xeon®

CPU E5-2698 vs4 @2.20GHz. Other benchmark details at https://docs.rapids.ai/overview/latest .pdf.

https://github.com/rapidsai/rmm
https://docs.rapids.ai/overview/latest.pdf
https://github.com/rapidsai/cudf/tree/main/python/dask_cudf
https://docs.rapids.ai/api/cudf/stable/guide-to-udfs.html
https://docs.rapids.ai/api/cudf/stable/guide-to-udfs.html
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6.2 Graphs (… Except When Something Is Not a Table)

Everything is a table, except when it’s not. For example, spreadsheets and SQL que-
ries both appear to have much to do with tables, except that under the hood, they
are really graphs. For spreadsheets, there are dependency graphs. For SQL queries,
there are query plans (DAGs, directed acyclic graphs)—plus schema represented in
ERD (entity relationship diagram) format, which can become complex graphs, too.
One truism about computing: when you
attempt to understand the nuances of
what’s happening at runtime in a spread-
sheet or a SQL query, you run headlong
into graphs.

 On the one hand, avoiding the key abstraction—for example, by making graph
processing appear as if it were a table—tends to obscure the metadata and business
rules in these systems. These abstraction mismatches become more difficult to trou-
bleshoot, test, reuse, audit, and so on, which creates a form of technical debt.22 On the
other hand, there’s a wide range of powerful graph algorithms, and these will not run
effectively in spreadsheets, SQL queries, and the like. Graphs have been a central con-
cept since the earliest years of computer science, so it’s surprising that programming
languages don’t support graphs directly.

 But for Python, a popular open source library called NetworkX provides for net-
work analysis, graph algorithms, and integration into graph serialization formats and
interactive visualization. Additional use cases for graphs in AI applications include
semantic inference, shape constraints (e.g., audits), probabilistic graphs (e.g., causality),
graph ML, etc. Open source libraries in Python, such as kglab, integrate NetworkX
into these other kinds of graph23 use cases.

 In RAPIDS, the cuGraph library builds atop cuDF to provide a GPU-optimized ver-
sion of NetworkX. It also includes some popular graph algorithms that are noticeably
missing from NetworkX, such as Leiden. For the code repository, user documenta-
tion, and blog articles, see the following:

 https://github.com/rapidsai/cugraph
 https://docs.rapids.ai/api/cugraph/stable/
 https://medium.com/rapids-ai/tagged/graph-analytics

Similar to the approaches used by cuDF, the cuGraph API attempts to steer developers
away from antipatterns, checking arguments and throwing exceptions if needed to

22 Felienne Hermans is a leading researcher about spreadsheets and has identified many of the associated prac-
tices and antipatterns: https://www.felienne.com/archives/tag/spreadsheets.

23 The iGraph library (https://igraph.org) is similar to NetworkX, and cuDF provides some of its features. In
general, there is a wide range of graph libraries, although these two represent those that fit especially well
with the PyData stack that’s so popular in data science work; for libraries comparisons, see https://derwen
.ai/docs/kgl/ack/#similar-projects. Of course, many popular libraries implement graph algorithms, such as
https://github.com/alibaba/GraphScope—although it scales out on CPU clusters, and its API is quite differ-
ent than NetworkX’s.

Everything is a table, except when it’s not.

https://docs.rapids.ai/api/cugraph/stable/api.html#module-cugraph.community.leiden
https://networkx.org/
https://github.com/DerwenAI/kglab
https://github.com/rapidsai/cugraph
https://docs.rapids.ai/api/cugraph/stable/
https://www.felienne.com/archives/tag/spreadsheets
https://medium.com/rapids-ai/tagged/graph-analytics
https://igraph.org/
https://derwen.ai/docs/kgl/ack/#similar-projects
https://derwen.ai/docs/kgl/ack/#similar-projects
https://derwen.ai/docs/kgl/ack/#similar-projects
https://github.com/alibaba/GraphScope
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provide better graph optimization with hardware. For example, at a low level, if a call
runs out of memory and crashes, that can be caught. Also, calls to graph algorithms in
cuGraph produce cuDF dataframes for their results, which allows for the use of
method chaining on graph operations—with dataframes as the unit of work. This fits
back into optimization strategy at the workflow level, e.g., with Dask. Figure 6.4 shows
a concise use of the cuGraph API in action.

The vision for cuGraph is “to make graph analysis ubiquitous to the point that users
just think in terms of analysis and not technologies or frameworks”—creating an
accelerated unified graph analytic library. From a big-picture perspective, the timing
for this could hardly be better. In February 2021, Gartner Research reversed its prior
guidance from mid-2020 in a new report, stating, “By 2025, graph technologies will be
used in 80% of data and analytics innovations, up from 10% in 2021, facilitating rapid
decision making across the enterprise.”

 Clearly, the opportunities afforded by cuGraph force a rethink about parallelism
for graph algorithms. On the one hand, many of the graph algorithms in NetworkX
can be implemented as operations on dense matrices with numeric values. Therefore
it makes sense that cuGraph uses cuDF dataframes internally to represent graph data.
To load graph data into cuGraph:

 The simplest way is to pass a networkx.Graph object.
 The fastest way is to load from a cuDF dataframe.
 SciPy also has sparse matrices that cuGraph can operate on directly.

Note that property graphs are widely used in industry (e.g., in the commercial graph
databases), and use cases for these can be accelerated by cuGraph plus GPU hard-
ware, plus other parts of RAPIDS that are outside the scope of the NetworkX API.

Figure 6.4 Example code for loading a graph from a dataframe

https://www.gartner.com/smarterwithgartner/gartner-top-10-data-and-analytics-trends-for-2021/
https://medium.com/rapids-ai/status-of-rapids-cugraph-refactoring-code-and-rethinking-graphs-efe9956d5528
https://docs.scipy.org/doc/scipy/reference/sparse.html
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 In any case, the point is to open much broader use cases for graph analytics by
making execution fast, especially with large graphs. For example, see “Tackling Large
Graphs with RAPIDS cuGraph and CUDA Unified Memory on GPUs” by Alex Fender
and Brad Rees for benchmark comparisons. The NVIDIA implementation of the pop-
ular PageRank (one form of graph algorithms used for measuring node centrality) with
a Twitter dataset was speeded up approximately 1000×24 using cuGraph and GPUs. As
you might expect, using cuGraph in place of NetworkX greatly accelerates applica-
tions, as shown in figure 6.5.

Figure 6.5 Speedup of graph algorithm benchmarks (including PageRank) using cuGraph and GPUs25

24 From the cuGraph documentation: “The compute power of the latest NVIDIA GPUs (RAPIDS supports Pas-
cal and later GPU architectures) make graph analytics 1000x faster on average over NetworkX”: https://docs
.rapids.ai/api/cugraph/stable/cugraph_intro.html.

25 From https://docs.rapids.ai/overview/latest.pdf.

https://medium.com/rapids-ai/tackling-large-graphs-with-rapids-cugraph-and-unified-virtual-memory-b5b69a065d4
https://medium.com/rapids-ai/tackling-large-graphs-with-rapids-cugraph-and-unified-virtual-memory-b5b69a065d4
https://medium.com/rapids-ai/tackling-large-graphs-with-rapids-cugraph-and-unified-virtual-memory-b5b69a065d4
https://github.com/rapidsai/cugraph/blob/branch-0.15/notebooks/demo/uvm.ipynb
https://dl.acm.org/doi/10.1145/1772690.1772751
https://docs.rapids.ai/api/cugraph/stable/cugraph_intro.html
https://docs.rapids.ai/api/cugraph/stable/cugraph_intro.html
https://docs.rapids.ai/api/cugraph/stable/cugraph_intro.html
https://docs.rapids.ai/overview/latest.pdf
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From the perspective of a better process for leveraging GPUs, the principle is to think
about how you store your data. While NetworkX uses dictionaries, which are ineffi-
cient, can you instead organize the data into numeric vectors? Also, how do you ask
questions about the graph? Sometimes asking one question is less efficient than ask-
ing more than one question at a time, such as in the case of breadth-first search.
Again, both of these points go into the dense kind of thinking about data workflows.

6.3 Pipelines (Workflows)

The notion of pipelines is generally not a first-class construct in programming lan-
guages. Remember, in data science and data engineering work, you’re probably defining
pipelines—typically much more so than you are writing custom code. There are related
notions such as method chaining in Scala, Java, Python, etc., and even more generally,
there’s the notion of function composition, which can be used along with object-oriented
programming in some languages (e.g., Scala, Java, Python, etc.) to create pipelines. In
other cases, popular Python libraries such as spaCy allow for factory objects to create
components that can be used to define pipelines.

 The popular scikit-learn open source library in Python provides simple and effi-
cient tools for predictive data analysis. It’s the core library in the PyData stack for run-
ning machine learning algorithms and defining data analytics pipelines in general.
Other machine learning libraries in Python use scikit-learn as their foundation, such
as lale for AutoML workflows.

 In scikit-learn, a Pipeline object is defined explicitly. Within these pipelines,
scikit-learn uses objects called estimators, i.e., any object that learns from data: a classi-
fier, a regression or clustering algorithm, a transformer that extracts and filters useful
features from raw data, and so on. By leveraging pipelines in scikit-learn, tools such as
Dask can then wield their magic to perform effective optimization: thinking sparse
and dense on behalf of data workflows. Even so, one of the confounding experiences
for the developers of scikit-learn is to see just how much effort people put into writing
custom code instead of simply using the built-in support for pipelines and composite
estimators. When developers pipeline their data workflows idiomatically, they can
unlock Dask’s acceleration benefits. Figure 6.6 shows a typical, concise pipeline defini-
tion using scikit-learn.

 In RAPIDS, the cuML library builds atop cuDF to provide a GPU-optimized version
of scikit-learn. For the code repository, user documentation, and blog articles, see the
following:

 https://github.com/rapidsai/cuml
 https://docs.rapids.ai/api/cuml/stable/
 https://medium.com/rapids-ai/tagged/machine-learning

NVIDIA works closely with the Dask team, and the cuML code base is designed with
Dask in mind: e.g., where algorithms are split into tiers. Even so, when you look at the

https://spacy.io/usage/processing-pipelines
https://scikit-learn.org/
https://github.com/IBM/lale
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
https://scikit-learn.org/stable/modules/compose.html
https://github.com/rapidsai/cuml
https://docs.rapids.ai/api/cuml/stable/
https://medium.com/rapids-ai/tagged/machine-learning
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cuML code, only about 4% is specific to GPUs. Most of the code is about smarter
implementations of algorithms for parallelization in general. 

 The range of what’s implemented in scikit-learn is vast, and not all of its estimators
are in common use. So, to be clear, cuML is not identical to scikit-learn, but it runs the
same models and implements the same API. The cuML team has been scraping Kag-
gle notebooks to run statistical analysis of where coverage is needed. The coarse-
grained strategic questions are simpler to answer: which estimators in scikit-learn are
found in the wild? But for a given estimator, determining which parameters to support
is a trickier tactical question that depends on the most common (and most recom-
mended) usage. Where parameters define algorithmic features, these are definitely
prioritized for support. Nonetheless, there are finer-grained details where cuML usage
may differ from scikit-learn results. For example, in poorly conditioned optimization
models, slightly different rounding errors can occur when algorithms are run in paral-
lel versus serial. But there are also optional slow paths in some estimators to fix some
minor discrepancies at the end of a workflow, to guarantee the end results down to
true machine epsilon, if needed. Figures 6.7 and 6.8 show typical speedups using
cuML versus scikit-learn.

 The key takeaway here is that to make the most of the hardware with machine
learning pipelines, be sure to

1 Use the standard APIs in cuML.
2 Use numeric formats.
3 Don’t use iteration loops.
4 Use the idiomatic scikit-learn approaches, such as pipelines.

Figure 6.6 Example code for a pipeline in scikit-learn
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Figure 6.7 Speedup benchmarks using cuML and GPUs (1/2)26

Figure 6.8 Speedup benchmarks using cuML and GPUs (2/2)

26 Source: https://docs.rapids.ai/overview/latest.pdf.

https://docs.rapids.ai/overview/latest.pdf
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There’s a cognitive leap from writing vanilla Python code to using pandas. To use
cuDF efficiently in place of pandas, you must learn to think about vectorizing critical
sections of code. Using pipelines in scikit-learn requires even more of a cognitive leap
since these pipelines represent so much work in so little code. Then, moving to cuML
in place of scikit-learn, you must leap a bit further since there are even larger penal-
ties for not using the idiomatic design patterns.

6.4 MLOps: Pipelines in Production

Pipelines are important in the early stages of data science processes where data gets
explored and models are trained. Pipelines are also essential for production scenar-
ios. They enable formalizing how production models are trained, deployed, and man-
aged. Some pipeline implementations also support streaming scenarios, where data is
scored against models as it arrives rather than captured and scored as batches later.

 Formalizing the deployment process is an integral part of the emerging interest in
MLOps, the extension of mature DevOps processes to the unique requirements of data
science artifacts in production.

 How formal, repeatable, and controlled to make pipeline deployments will depend
on the answers to several questions. Two questions that we think everyone should con-
sider are these:

 Is the data used for training and production scoring subject to careful data gov-
ernance? Data with sensitive information requires access controls, provenance
tracking, and other careful handling. Some data may be so sensitive that it can
only be accessed in a carefully controlled production environment by a limited
set of privileged team members, where even the data science team may not have
free access for model development!

 What is the cost of failure? If a model makes a bad decision, what is the negative
impact on the organization, customers, etc.? Concerns about embedded bias in
models lead to requirements for repeatable training processes, where the meta-
data about any one model in production can be interrogated to debug issues,
such as what datasets were used to train the model, when and how was the
model trained, etc. This in turn means automation and repeatability of all
aspects of the pipeline may be required, and visibility into model performance
at runtime is essential.

DevOps emerged as a general approach to automate deployments and management
of services, independent of what the services do. A DevOps pipeline for deployment
and management might include any or all of the following stages, which typically start
from the moment a software revision is pushed to a target repository branch or is
tagged in some appropriate way:

1 Check out the repository branch or tag.
2 Perform a full build of the deployment artifacts.
3 Run all automated unit and integration tests.
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4 Deploy to a staging environment, and run further acceptance tests.
5 Deploy to production.
6 Optionally, route a percentage of traffic to the new and old deployments for

A/B or canary testing, or do traffic shadowing, as well, to allow additional burn-
in testing for safety.

7 Remove older deployments, and route all traffic to the new deployment.
8 Monitor the service for health.
9 Scale instances of the service up and down on demand.

10 Route traffic away from the service in preparation for retirement.
11 Remove the service from production.

To be clear, this DevOps pipeline is different from the data science pipeline described
earlier. These are nested pipelines. The latter can be managed by the former. When
data science pipelines are managed, additional considerations lead to the MLOps spe-
cialization of DevOps:

 Data governance, such as access controls and provenance tracking, is required
at all stages where data is used.

 Models are themselves data since they are intellectual property, and in some
cases, sensitive information from the training data can be extracted from them.

 Model serving results (scores) are inherently nondeterministic, reflecting their
probabilistic and statistical roots, which is an unfamiliar property for developers
and administrators accustomed to other kinds of services.

The production models are trained in an MLOps pipeline build step, while the data sci-
ence team designs and trains models to discover the optimal model architecture. To
achieve the required repeatability, automation, and end-to-end governance, the pro-
duction models are built by the pipeline using the hyperparameters determined during
the discovery process (although some additional hyperparameters might be deter-
mined during the build). 

 All services require monitoring in production for health and performance. Model
serving adds particular metrics to gauge model performance. In particular, concept drift
is a decay process of sorts, where a model trained on data at a particular point in time
becomes less and less effective as the data characteristics evolve over time.

 Fortunately, MLOps principles apply equally well to CPU-based data pipelines and
GPU-accelerated pipelines, although some details will vary. For more on MLOps, see
this GradientFlow blog post27 and this Martin Fowler blog post.28

 

27 https://gradientflow.com/what-is-dataops/
28 https://martinfowler.com/articles/cd4ml.html

https://www.getambassador.io/docs/edge-stack/latest/topics/using/shadowing/
https://gradientflow.com/what-is-dataops/
https://martinfowler.com/articles/cd4ml.html
https://gradientflow.com/what-is-dataops/
https://martinfowler.com/articles/cd4ml.html
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6.5 Tensors (Deeper Data Representation)

You can think of a tensor as an N-dimensional matrix (there are a few subtle differ-
ences). It used to be the case that if you wanted to run numerical libraries on net-
works or graph data, first you needed to fit the data into a matrix. Graphs with multiple
kinds of edges between two nodes, or attributes on nodes and edges, had to be simpli-
fied. These conversions, at best, resulted in overly complicated and expensive encod-
ing. At worst, important and valuable details were lost.

 Alternatively, a tensor is a better way to represent a network or a graph instead of
trying to wedge the data into matrices. Prior to 2015, there weren’t many open
source libraries for working with tensor representations of data, especially not in
Python. However, these days we hear the word tensor frequently in relation to work
with neural networks, in TensorFlow, PyTorch, etc. So far, not many programming
languages have tensors defined as first-class constructs. Instead, we need to rely on
the idioms of popular deep learning frameworks—and follow their idiomatic
approaches. These frameworks have made good use of GPU hardware optimizations
from their inception.

 Figure 6.9 shows how popular data science packages that use data as tensors can
interoperate by sharing objects in device memory. This keeps data on the GPU to
avoid costly memory copies back and forth between GPU and CPU memory.

Going back to our earlier discussion about the kinds of data used for machine learn-
ing, it’s important to note that the early breakthroughs29 for deep learning almost all
involved computer vision (CV) problems. Then, in late 2017, the notion of embedded lan-
guage models30 led to breakthroughs with deep learning in natural language processing

29 See the “AlexNet” paper from 2012, “ImageNet Classification with Deep Convolutional Neural Networks,”
by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton: https://papers.nips.cc/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

30 The first was ELMo by Allen AI in 2017 (https://allennlp.org/elmo), followed by a general class of trans-
former models for NLP.

Figure 6.9 DL frameworks that use tensors, sharing memory objects

https://mathworld.wolfram.com/Tensor.html
https://www.tensorflow.org/
https://pytorch.org/
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://allennlp.org/elmo
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(NLP). The way that deep learning frameworks used GPUs was informed by the needs
of CV, which were reused for NLP work. Notably, in CV

 There are large datasets.
 Each of the inputs is a relatively large object.
 The resulting model is massive (many parameters).

Also, understand the typical performance concerns for training deep learning models:

 Math-heavy parts such as convolutions, fully connected layers, or recurrent lay-
ers tend to be compute-bound.

 Loss calculation or bias normalization tends to be limited by memory.

Hence, the first round of popular AI applications involved CV and natural language.
However, the adoption of deep learning has spread throughout industry, where it is
being used for other kinds of problems. 

 One broad class of machine learning applications are recommender systems (recsys),
which were the initial commercial successes that drove billion- and trillion-dollar com-
panies: product recommendations on Amazon, search recommendations on Google,
social recommendations on LinkedIn, media entertainment recommendations on
Netflix, and so on—plus virtually all of online advertising. The recsys use cases based
on deep learning will likely outnumber the CV use cases. However, the data needs for
recsys applications are shaped quite differently:

 The resulting models aren’t massive.
 Embeddings represent the bulk of what is stored on GPUs.
 Memory is the limiting factor (based on the embeddings), not compute.

There are also considerations about the costs and potential bottlenecks at training
time versus inference time, for example, during model usage. Access to memory
bandwidth therefore becomes the gating factor for recsys; moreover, these bandwidth
bottlenecks occur in both training and inference, which can escalate costs. Conse-
quently, early recsys use of GPUs was only 4–5× faster than CPU. In most cases, if you
tried out GPUs two years ago for recsys, you probably concluded, “Zero benefit.”

 The kinds of layers that a neural network uses has an impact: they rely on different
kinds of system resources and therefore may encounter different kinds of perfor-
mance bottlenecks. Figure 6.10 shows typical kinds of layers in a deep neural network
model and indicates whether they tend to be compute (CPU/GPU) bound or mem-
ory bound.
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Figure 6.10 Typical layers31 in deep learning, with their performance characteristics

After much performance analysis of recsys applications, NVIDIA has been building
software atop the backbone of RAPIDS, which wasn’t needed or even possible during
the rise of CV (2009–current) or NLP (2017–current). The NVTabular package is “a
feature engineering and preprocessing library for tabular data designed to quickly
and easily manipulate terabyte-scale datasets used to train deep learning-based recom-
mender systems.” Translated: recsys is typically trained on data from log files—
machine data. To be efficient, this kind of data requires substantially different prepro-
cessing than images or text, as well as different hardware and software architecture.
For the code repository, user documentation, and blog articles, see the following:

 https://github.com/NVIDIA/NVTabular
 https://nvidia.github.io/NVTabular/main/index.html
 https://developer.nvidia.com/nvidia-merlin
 https://medium.com/nvidia-merlin

Only within the last generation of GPUs has the hardware become well-suited for
recsys use cases by improving memory bandwidth. Fortunately, embeddings tend to
follow a Power Law distribution, so they can leverage caching better than what’s been
done previously with GPUs. The performance of interconnects is also getting better,
such NVLink and RDMA.32

 One interesting finding from the performance analysis of recsys on GPUs: overall
performance was typically gated by the performance of the data loaders33—for exam-
ple, the DataLoader objects in PyTorch. Recall that CV involves really big data objects
for input, and by default, these are loaded one by one in TensorFlow or PyTorch. In

31 Specifically, convolution (conv) and fully connected (FC) layers are compute intensive, while bias, normal-
ization (norm), rectified linear units (relu), and dropout require lots of memory for recsys.

32 See the 2013 “Taming Latency” talk by Jeff Dean for a good general discussion of optimizing software and hard-
ware for training large neural networks, including latency for memory interconnects: https://youtu.be/
S9twUcX1Zp0.

33 See “Announcing the NVIDIA NVTabular Open Beta with Multi-GPU Support and New Data Loaders” (5
October 2020).

https://pytorch.org/docs/stable/data.html
https://github.com/NVIDIA/NVTabular
https://nvidia.github.io/NVTabular/main/index.html
https://developer.nvidia.com/nvidia-merlin
https://en.wikipedia.org/wiki/Power_law
https://www.nvidia.com/en-us/data-center/nvlink/
https://developer.nvidia.com/blog/benchmarking-gpudirect-rdma-on-modern-server-platforms/
https://youtu.be/S9twUcX1Zp0
https://youtu.be/S9twUcX1Zp0
https://youtu.be/S9twUcX1Zp0
https://medium.com/nvidia-merlin
https://developer.nvidia.com/blog/announcing-the-nvtabular-open-beta-with-multi-gpu-support-and-new-data-loaders/
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contrast, recsys uses many data input items that are much smaller, so the memory
bandwidth bottlenecks will cause the default data loaders to run orders of magnitude
slower. That was the first priority in software for NVTabular to fix!

 Other typical recsys bottlenecks on GPUs have been mitigated by

 Pre-shuffling the training data—then the data movement becomes much more
efficient for a GPU

 Changing the data access patterns to get everything ready for recsys upfront,
prior to data loading

 Also speeding up PyTorch training of recsys by 10×

With these mitigations taken together, a typical recsys pipeline now runs 50× faster on
GPU than when using CPU.

 To be effective for recsys applications in the general case, we must think about the
problem across the board: how long does it take a data scientist to go from problem for-
mulation to production? This question is turning out to spotlight time-to-market
(TTM) as one of the key performance indicators34 for AI projects in production. And
to that point, the NVTabular team is in a unique position. In industry, recsys teams
tend to be tied very closely to near-term revenue; in other words, company executives
watch the performance of recsys applications closely, especially in advertising. People
working on these kinds of teams35 in
industry rarely get to step back, analyze
the performance of their hardware in
fine-grained detail, and then recommend
a co-evolution strategy for hardware and
software architecture together. Instead,
their executives demand immediate
results.

 In response to these needs, the NVTabular team has leveraged their unique posi-
tion to develop the hardware and software together to achieve optimal performance.
This represents a rethink about recsys on GPU, considering how the hardware has
changed so much since the early days of CV and how the software has also evolved,
such as in terms of caching.

 Other enhancements for recsys include the following:

 Note how trade-offs for memory bandwidth costs are similar to the costs of mov-
ing data in and out of the cloud. In the larger scope, allowing recsys pipelines to

34 For two studies about TTM as a key performance indicator in AI products, see Operationalizing AI by John
Thomas, Will Robert, and Paco Nathan (2021), https://www.oreilly.com/library/view/operationalizing-
ai/9781098101329 and “2021 AI in Healthcare Survey Report” by Ben Lorica and Paco Nathan, https://
gradientflow.com/2021aihealthsurvey.

35 Per Paco’s personal experience, having led recsys teams in advertising.

To be effective for recsys applications in
the general case, we must think about the
problem across the board: how long does
it take a data scientist to go from problem
formulation to production?

https://www.oreilly.com/library/view/operationalizing-ai/9781098101329/
https://www.oreilly.com/library/view/operationalizing-ai/9781098101329/
https://gradientflow.com/2021aihealthsurvey.
https://gradientflow.com/2021aihealthsurvey.
https://gradientflow.com/2021aihealthsurvey.
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access cloud storage directly is another way that NVTabular helps scale out solu-
tions even at the early workflow stages of data preparation.

 Exporting the pipeline used in training so that it can be reused at inference
time in production.

 Work on ETL to capture the statistics of input data since recsys data tends to drift
more than CV or NLP data and require more frequent updates of ML models.

Consequently, what NVTabular provides to customers includes a couple of design pat-
terns plus their orchestration, for a continuous feed of data (required by the recsys
definition) as well as continuous updates for models.

 A key takeaway for leveraging hardware with tensors, especially for recsys applica-
tions: “Think about where data needs to be stored and used. Efficient and fast data
transfer is super important.”

7 Leveraging Design Patterns: Neither a Tinkerer 
nor a Trifler Be
If you want to be effective as a software engineer and make the code take advantage of
the hardware to make the most of your data, then do just that: be an engineer, not a tin-
kerer. Based on using the key abstractions described previously, let’s spell out the gen-
eral form of a process for data workflows that use GPU hardware and the related
software layers:

 Consider your use case from end-to-end, from product concept through into
production use and iteration, and be especially mindful about TTM.

 Recognize the kind of processing needed in each stage of a workflow, and
accomplish it there: don’t conflate sparse thinking with dense thinking.

 Use the appropriate data abstractions, and follow idiomatic design patterns for
their related libraries—dataframe/pandas/cuDF, graph/NetworkX/cuGraph,
pipeline/scikit-learn/cuML, tensor/PyTorch/NVTabular—and also in work-
flow tools such as Dask.

 Apply software engineering tools that detect the use of these idioms and design
patterns in Python—or antipatterns—as part of your continuous integration
process. These techniques complement conventional unit testing and integra-
tion testing, which are used for detecting bugs and meeting requirements.

 Use profiling tools for performance analysis of your applications, applying
them layer by layer as needed until you can identify the main gating factors.

Another part of the process is to engage with the developer community: SSO, Go.AI
Slack, attending GTC conferences, GitHub issues for the open source projects, meet-
ups, etc. It’s surprising how much you can learn—best practices, new tooling, and so
on—from other practitioners through these interactions.

 We’ve discussed the first three points; next let’s unpack the fourth: how to leverage
software engineering tools to follow idioms and design patterns more closely. The
next section explores the fifth point. 

https://developer.nvidia.com/login
https://join.slack.com/t/rapids-goai/shared_invite/zt-h54mq1uv-KHeHDVCYs8xvZO5AB~ctTQ
https://join.slack.com/t/rapids-goai/shared_invite/zt-h54mq1uv-KHeHDVCYs8xvZO5AB~ctTQ
https://join.slack.com/t/rapids-goai/shared_invite/zt-h54mq1uv-KHeHDVCYs8xvZO5AB~ctTQ
https://www.nvidia.com/en-us/gtc/


38 Hardware > Software > Process: Data Science in a Post-Moore’s Law World
 In Python software development, whether for data science or any other application
area, the single best thing you can learn to do is to make good use of the standard
tooling. That doesn’t necessarily imply using IDEs, although these can help. It’s more
a matter of tools that can run in addition to your unit tests. Roughly speaking, these
are continuous integration checks to analyze and verify changes in your source code
before your commits.

 Use type annotations plus related annotation checkers such as Mypy to catch
areas of code that need better specification. These help prevent bugs and can
also help the underlying software layers optimize code execution.

 Use linters such as Pylint, Flake8, and Black—not only to check for formatting but
also to identify sections of code that could be expressed more idiomatically.
Think of these tools as a form of unit testing that pushes you to follow better
design patterns: for example, using comprehensions. Recall that Python is quite
forgiving and allows you to write code poorly; these tools push you toward more
efficient idioms.

 Be sure to use pre-commit hooks in your coding projects to help employ all of the
above as well as check for potential security vulnerabilities and other hazards.

For some good general guides to using pre-commit hooks in Python and these kinds
of tools in general, see the following:

 https://pre-commit.com
 https://calmcode.io/pre-commit/the-problem.html
 https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
 https://docs.github.com/en/developers/webhooks-and-events/about-web-

hooks

Figure 7.1 shows the commands you can use to install and begin using pre-commit
hooks for a Git repository.

Figure 7.1

https://docs.python.org/3/library/typing.html
https://github.com/python/mypy
https://www.pylint.org
https://flake8.pycqa.org/en/latest/
https://github.com/psf/black
https://pre-commit.com
https://calmcode.io/pre-commit/the-problem.html
https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://docs.github.com/en/developers/webhooks-and-events/about-webhooks
https://docs.github.com/en/developers/webhooks-and-events/about-webhooks
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8 The Art of Profiling: Veni, Vidi, Metiri36

The previous section discussed process approaches that are mostly automated, such as
pre-commit hooks used prior to committing code into a Git repo. When antipatterns
in the code are identified, you revise the source and then commit. Done and done. In
contrast, this section explores tools that generally aren’t quite as automated. You may
do a little benchmarking automatically—ensuring that any code changes don’t degrade
your pipeline performance—but you probably don’t budget hours of profiling for
each pull request or dig into hardware profiling on every commit. Instead, these tools
become engineering practices: used when needed. Profiling is always an iterative pro-
cess of discovery and action, as illustrated in figure 8.1.

How you use the profiling tools is important. There are layers in the tech stack, and
your profiling should progress in stages through those layers: Python, Cython, C++,
CUDA. Have a strategy for profiling and how to use the feedback from it:

1 Start with coarse-grained analysis in Python.
2 Drill down to more fine-grained profiling tools to troubleshoot problems as

they are identified.
3 Throughout, use an “inspect, visualize, analyze, take action” loop to guide your

performance analysis.

Figure 8.2 illustrates the layers encountered with cuDF. The software layers are on the
left: Python is at the highest level, farthest from the hardware, while CUDA is the low-
est-level library for direct manipulation of GPUs. On the right are the patterns for

36 “I came, I saw, I measured,” with apologies to Julius Caesar.

Figure 8.1 An iterative process as 
a best practice for using profilers

https://en.wikipedia.org/wiki/Veni,_vidi,_vici
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how these are used, such as Dask-cuDF. For effective profiling, you need to progress
through these layers using the interactive process.

Figure 8.2 Software stack for cuDF, where the layers on the left correspond to patterns for usage on 
the right37

The following table describes several popular profilers for Python that analyze38 for
both compute-bound and memory-bound bottlenecks.

37 Source: https://docs.rapids.ai/overview/latest.pdf.
38 For example use of these profiling tools in a Python application, see the pi.ipynb notebook in the

https://github.com/DerwenAI/ray_tutorial tutorial.

Library Purpose Usage

watermark Jupyter magic extension for printing date 
and time stamps, library version num-
bers, and hardware information

Keeping track of the details for each con-
figuration you’re profiling

Fil Tracing peak memory usage Determining which section of code 
caused the high-water mark

objgraph Tracing and visualizing the object graph Finding out which objects are referencing 
which other objects

tracemalloc Tracing memory blocks allocated by 
Python

Computing the differences between snap-
shots to detect memory leaks

SnakeViz Browser-based graphical viewer for 
cProfile output

Using icicle charts and sunburst charts to 
visualize compute-bound functions

cProfile Built-in profiler (in C, for less overhead) 
for deterministic profiling of the call stack

Capturing the full statistics of the run 
time for a Python application

pyinstrument Statistical profiler of the call stack Estimating compute times for particular 
sections of code (less distorted by 
overhead)

https://github.com/rasbt/watermark
https://github.com/pythonspeed/filprofiler
https://mg.pov.lt/objgraph/
https://docs.python.org/3/library/tracemalloc.html
https://jiffyclub.github.io/snakeviz/
https://github.com/joerick/pyinstrument/
https://docs.python.org/3/library/profile.html#module-cProfile
https://docs.rapids.ai/overview/latest.pdf
https://github.com/DerwenAI/ray_tutorial/
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For other good overviews about using the Python profilers, see the following:

 https://scoutapm.com/blog/identifying-bottlenecks-and-optimizing-perfor-
mance-in-a-python-codebase

 https://towardsdatascience.com/speed-up-jupyter-notebooks-20716cbe2025
 https://jakevdp.github.io/PythonDataScienceHandbook/01.07-timing-and-

profiling.html

Most users will rarely ever need to punch down below the Python tools. However, if you
need more fine-grained analysis, Nsight Systems provides profiling at the hardware
level. Based on this, you can use NVTX decorators to annotate your Python, Cython,
and C++ code to generate timelines for analyzing and visualizing how your code runs on
GPUs. Nsight Systems also measures the use of other resources: memory, disk, etc.

 Another tool called DLProf provides additional details specifically for deep learn-
ing workloads. This tool is agnostic about frameworks, supporting the GPU-optimized
versions of TensorFlow, PyTorch, and TensorR—running atop Nsight Systems and
using NVTX markers. DLProf analysis correlates to the layers and iterations of deep
learning models as these are being trained. You interact with its UI as a TensorBoard
plugin, much like other tools for analyzing DL workloads.

9 Looking Ahead
The intention of this report was to discuss the considerations needed in your software
and process to take advantage of newer hardware. Of course, there isn’t room on the
page to dig into more details about the full range of options for RAPIDS and other
libraries across a wide range of available hardware. This is pointed at people develop-
ing in Python for data science and data engineering purposes.

 Why does this matter? Speed, cycle times, and time to market (TTM) are the key
motivators. That’s an enormous game-changer. To quote from a recent paper39 from
the RAPIDS team, “One of the core ideas and motivations behind the multifaceted
and fascinating field of computer programming is the automation and augmentation
of tedious tasks.”

 The TTM metric has become one of the most important key performance indica-
tors for AI projects. People working in data science teams typically spend upward of
90% of their time waiting for ETL jobs to complete, waiting for models to finish training,
and waiting to visualize results. Figure 9.1 provides a cheeky view of a day in the life of
a data scientist when using CPU-based ETL versus GPU-accelerated ETL.

 
 
 

39 “Machine Learning in Python: Main developments and technology trends in data science, machine learning,
and artificial intelligence,” by Sebastian Raschka, Joshua Patterson, and Corey Nolet (31 March 2020):
https://arxiv.org/abs/2002.04803.

https://scoutapm.com/blog/identifying-bottlenecks-and-optimizing-performance-in-a-python-codebase
https://towardsdatascience.com/speed-up-jupyter-notebooks-20716cbe2025
https://jakevdp.github.io/PythonDataScienceHandbook/01.07-timing-and-profiling.html
https://jakevdp.github.io/PythonDataScienceHandbook/01.07-timing-and-profiling.html
https://developer.nvidia.com/nsight-systems
https://docs.nvidia.com/gameworks/content/gameworkslibrary/nvtx/nvidia_tools_extension_library_nvtx.htm
https://docs.nvidia.com/deeplearning/frameworks/dlprof-user-guide/
https://www.tensorflow.org/
https://pytorch.org/
https://developer.nvidia.com/tensorrt
https://www.tensorflow.org/tensorboard
https://arxiv.org/abs/2002.04803


42 Hardware > Software > Process: Data Science in a Post-Moore’s Law World
Figure 9.1 A hardware-accelerated process remaps data practices due to TTM.40

40 Source: https://docs.rapids.ai/overview/latest.pdf.

https://docs.rapids.ai/overview/latest.pdf
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In practice, all of the waiting implies some almost inevitable failure modes. First, your
highly expert (and expensive) staff are probably going to go get coffee instead of
focusing on hard problems. That creates a cognitive load for the individuals and slows
down team collaboration overall. Second, your team will tend to have less time for iter-
ating toward better solutions. The best practices that we’ve outlined almost all depend
on iteration—lots of iterations. Take that away, and your team’s software engineering
process will have a regression back to waterfall practices. Again, how long does it take a
data scientist to go from problem formulation to production? This is more than an
argument about efficiency—it’s an argument about bringing complex engineering
problems and their appropriate tooling back to human scale.

 Looking ahead, the demand for larger and more complex machine learning mod-
els and other data analytics will of course continue to drive the evolution of hardware:
specifically, toward more complex workflows involving Multi-Node Multi-GPU (MNMG)
architectures, which require a fine balance of resource use for compute, memory,
storage, network, etc. This implies a co-evolution of the hardware and software
together, which is definitely in progress. For one good example, take a look at Unified
Memory, which simplifies the programming model of MNMG, providing a pool of
memory shared by CPUs and GPUs. On the one hand, this reduces the bottlenecks of
moving memory objects (deep copies) between devices, while on the other hand, it
reduces the need for programmers to stop and think about which devices their code
must run on, where, when, and why.
While this doesn’t resolve all the issues
of distributed processing, it does confront
some of the challenges of thinking sparse
and dense and makes the lower layers of
software much simpler to leverage.

 Moving up the software stack, some
changes will be required in machine learning frameworks: for example, the notion of
model parallelism, splitting the layers of deep learning models across multiple devices,
for example, using MNMG architectures. In an even more general sense, a newer gen-
eration of distributed tooling is emerging, such as the Legion programming runtime
environment and the Legate framework for scaling. Research from Stanford Univer-
sity and Los Alamos National Labs has produced a distributed processing framework
for Python workloads that outperforms even the latest generations of Dask, Spark,
Ray, JAX, and so on. In particular, Legate understands how to scale a data workload
efficiently across a combination of CPU clusters and GPU clusters, both with native
support. Meanwhile, it’s also much more aware of the key abstractions mentioned ear-
lier. The idea is to port a large set of Python libraries atop Legion. These will be natu-
rally composable since they share a common data model and runtime, with a
scheduler that is built for analyzing and resolving some of the bottlenecks we’ve
described.

The demand for larger and more complex
machine learning models and other data
analytics will continue to drive the
evolution of hardware.

https://developer.nvidia.com/blog/unified-memory-in-cuda-6/
https://developer.nvidia.com/blog/unified-memory-in-cuda-6/
https://developer.nvidia.com/blog/unified-memory-in-cuda-6/
https://legion.stanford.edu
https://legion.stanford.edu/pdfs/legate-preprint.pdf
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10 Conclusion
This report has explored hardware innovations that enable previously impossible
applications, plus the rethinking of how we build data science workflows and the pro-
cesses we follow. We hope you have found the report useful and thought-provoking.
Here are the key suggestions we believe you should keep in mind when developing
and running production data workflows:

 Demand for larger and more complex machine learning models and other data
analytics drives a co-evolution of hardware and software, where it won’t be possi-
ble to train models on a single processor and strategies for using MNMG clus-
ters become essential.

 Hardware acceleration with GPUs offers dramatic performance increases,
which also reduces overall costs. Even more important, this approach reduces
the key TTM performance indicator.

 Write idiomatic code so the hardware can be used to its fullest extent. Use tools
like linting, static analysis, and pre-commit hooks to help ensure this goal and
iterate on profiling in layers.

 Try to develop an intuition about how the hardware works and how this helps
when optimizing your applications. You don’t need to be an expert, but under-
standing the fundamentals can enable you to realize solutions you may have
once thought impossible.

Organizations can meet the increasing demands of data workflows by using powerful,
distributed GPUs and CPUs in MNMG architectures. These require using highly opti-
mized tools, such as RAPIDS, along with a data-centric approach. Using these tools,
results can be obtained orders of magnitude faster, and that increase in speed itself
enables entirely new application areas to thrive in the enterprise. Meanwhile, the data
scientists and data engineers on your team can continue to use many of the same
Python packages, design patterns, and frameworks they already know.
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